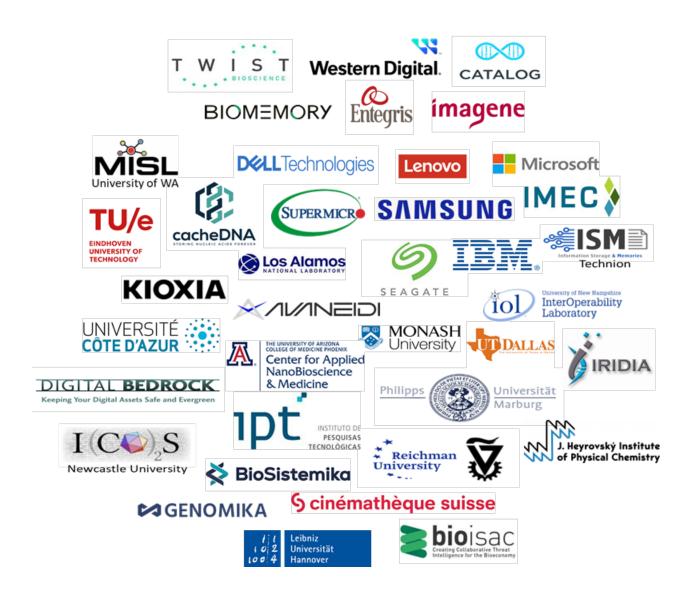


DNA Data Storage

2025 Library of Congress DSA

Dave Landsman
Distinguished Engineer, Western Digital
Chair, DNA Data Storage Alliance


DNA Data Storage Alliance

Mission

 Create an interoperable storage ecosystem based on DNA as a data storage and compute medium

Scope

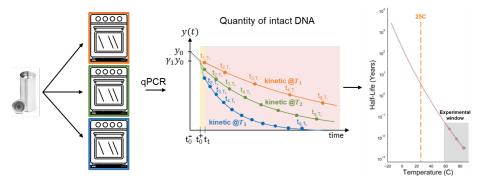
- Educate the market to create awareness and adoption of DNA data storage and compute
- Influence and drive R&D and funding
- Develop standards and specifications to encourage ecosystem evolution

DNA Data Storage Alliance - 2024

Publications

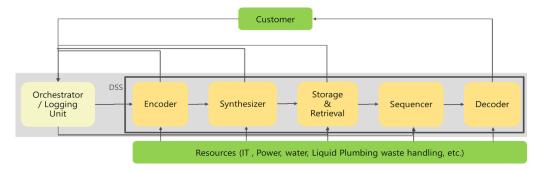
- DNA Stability Evaluation Method for DNA Data Storage Containment Systems v1.0
- DNA data storage chapter in <u>2023 IEEE Mass Storage Roadmap Update</u>

Presentations

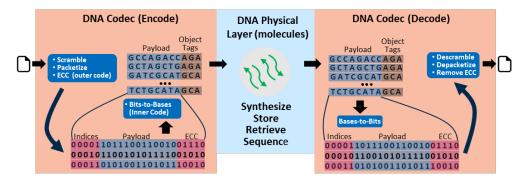

- Industry Events (FMS, SDC, Storage Technology Showcase, Library of Congress...)
 - DNA Data Storage An Overview
 - End-to-End DNA Data Storage System Concept
 - End-to-End DNA Data Storage System Concept (video)
 - DNA Data Storage Alliance Technical Roadmap
 - Data Retention Metrics in a DNA Storage System
- Other
 - SNIA Podcast: DNA, The Future of Data Storage

Events

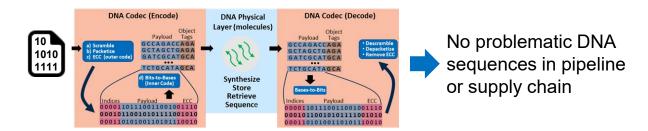
- Satellite workshop at ISIT 2024: Coding Theory and Algorithms for DNA-based Data Storage
 - 60 attendees; 9 plenary talks; 16 posters
 - Interesting topics for further review came out of the workshop discussions


DNA Data Storage Alliance - 2024

1) Data Retention Workgroup


- Stability Evaluation Method published
- Considering "Data Retention Calculator"

3) Interoperable Interfaces Workgroup


Working on spec integration

2) Codecs Workgroup

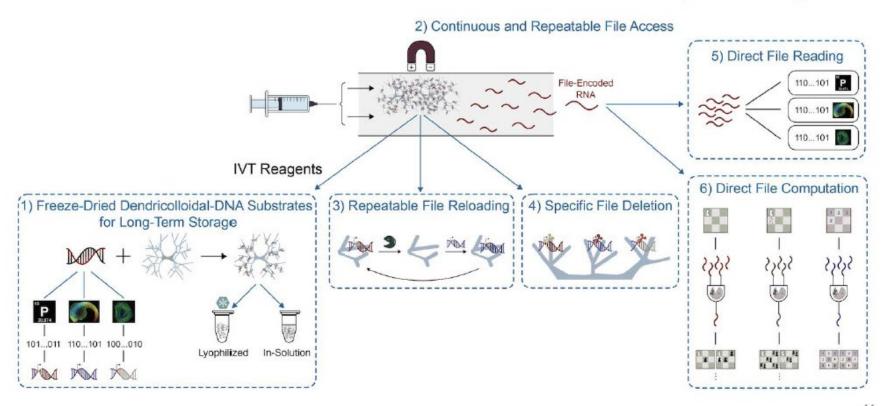
- Working on "Codec Requirements" white paper
- Open source codec TBD

4) Biosecurity Workgroup

- Initial regulatory position drafted and being socialized
- Considering establishing biosecurity standards

DNA Data Storage Alliance – 2025

Storage and Computing with DNA 2025, Paris, June 19-21

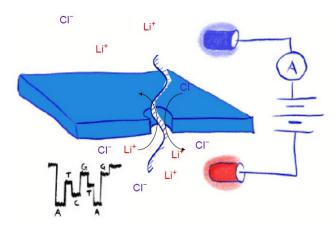


- Finish draft publications
 - Technology White Paper #2
 - Codec Requirements
 - Interoperable Interfaces
- New standards/specs as we think of them

Emerging example: Writing DNA to a substrate

NC STATE UNIVERSITY

An End-to-End Primordial Store and Compute Engine


Lin, K.N., Volkel, K., Cao, C. *et al.* A primordial DNA store and compute engine. *Nat. Nanotechnol.* **19**, 1654–1664 (2024). https://doi.org/10.1038/s41565-024-01771-6

44

Emerging example: Reading w/ solid state nanopores

- Nanopores promising for DNA data storage
 - Long reads
 - Direct base calling so no expensive optics, indirect synthesis
- Nanopores also useful for the detection of molecules and use cases beyond DNA (RNA, Peptides, Proteins, ...)
- Demand from many areas for fast molecular read, in data storage and significant existing adjacent markets
 - Proteomics (single molecule protein sequencing)
 - Disease detection (food, virus)
 - Environmental pathogens, natural or manmade

- Solid state nanopores: Less accuracy than biological, but ...
 - Cheap fabrication (BEOL compatible)
 - Rely on semiconductor scaling
 - Accuracy can be compensated by coding gain
 - Optimize for retention and/or SNR
- Lots of ecosystem activity (customer and supplier) around SSNP as "fast read" solution

https://www.solidstatenanopore.com/post/nanopore-basics

THANK YOU

Come join us:

X: @DnaDataStorage

LinkedIn: @dna-data-storage-alliance

Email: ddsa-chair@snia.org

Email: dave.landsman@wdc.com

URL: www.snia.org/groups/snia-dna-technology-affiliate